
CSCI 3110 mini-Assignment 7 Solutions

December 5, 2012

Ex.1 2.18 Consider the task of searching a sorted array A[1...n] for a given element x: a task we usually
perform by binary search in time O(log n). Show that any algorithm that accesses the array only via
comparisons (that is, by asking questions of the form is A[i] ≤ z?), must take Ω(log n) steps.

Consider the decision tree for the problem. At each internal node a comparision occurs A[i] ≤ x, the
result of which a decision is made for the next part of the search . The leaves of the decision tree
represent the possible outputs of the algorithm: Here they are the n indices of the elements plus the
possibility that the element x is not present in A. This means the decision tree must have at least
n + 1 leaves. A path from root to a leaf represents an execution of the algorithm. Since the tree has
at least (n + 1) leaves, the decision tree must have height at least log(n + 1), giving an execution time
in Ω(log(n + 1)).

Ex. 2. In the algorithm SELECT covered in class, the input is divided into groups of 5. Will the
algorithm work in linear time if they are divided into (i) groups of 7? (ii) Give an argument that
SELECT will not run in linear time if groups of 3 are used. (Bonus: if you can obtain a general
expression, then you could answer both questions).

SOLUTION 1:
(i) Yes, the algorithm will work in linear time if they are divided into groups of 7. There are n/7
groups with at least 4 · 1/2 · (n/7) elements that are less than or equal to the median of the medians,
and at least as many that are greater than or equal to the median of medians. Thus, the larger
subset after partitioning has at most n− 2n/7 = 5n/7 elements. The running time is
T (n) = T (n/7) + T (5n/7) + Θ(n) Solve using substitution:
Assume:

T (k) ≤ c∗k for k < n

T (k) ≤ c∗(n/7) + c∗(5n/7) + c1n = c∗(6n/7) + c1n = c∗n + (c1 − c∗(1/7))n ≤ c∗n

which is linear if (c1 − c∗(1/7)) ≤ 0 (for a more careful analysis, see class notes on SELECT
(attached).

(ii) Using a similar analysis we get that there are only 2 · 1/2 · (n/3) elements that are guaranteed to
be larger or smaller than the median of medians. The recurrence is
T (n) = T (n/3) + T (2n/3) + Θ(n) = Θ(n log n). (solve using substitution)
SOLUTION 2:
If we use k elements as a group, the number of elements less than the median is:
dk/2e

(
d 12d

n
k ee − 2

)
≥ n

4 − k. In the worst case, we need to recursively call Select for

n−
(
n
4 − k

)
= 3n

4 + k times. Thus we have:

T (n) = T
(
dn
k
e
)

+ T

(
3n

4
+ k

)
+ O(n)

Using iterations, we have:



T (n) ≤ c
(
dn
k
e
)

+ c

(
3n

4
+ k

)
+ O(n)

≤ c
(n
k

+ 1
)

+
3cn

4
+ ck + O(n)

=
cn

k
+

3cn

4
+ c(k + 1) + O(n)

= cn(
1

k
+

3

4
) + c(k + 1) + O(n)

≤ cn

where 1
k + 3

4 < 1 => k > 4

Hence, the group size must be larger than 4 to make it linear.


